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Problem A

 

Dice

 

Source file: dice.pas, dice.c, dice.cc or dice.java

 

A simple boardgame that generations of children have played consists of a board containing a trail of
squares and a set of colored pieces. At the beginning of the game each player is assigned a piece; all
pieces are initially positioned right 

 

before

 

 the first square of the trail. 

The game proceeds in rounds. At each round, players rolls a pair of dice, and move their pieces for-
ward a number of squares equal to the rolled result. Players roll the dice always in the same order
(player A, then player B, etc.) in the rounds. 

Most of the squares on the board are plain squares, but some are “traps”. If a player’s piece falls on a
trap square at the end of the player’s move, the player misses the next round. That is, she/he does not
roll the dice, and her/his piece stays one round without moving. 

There will be exactly three traps on the trail. 

The winner of the game is the player whose piece reaches the end of the trail first. The end of the trail
is 

 

after

 

 the last square of the board. Consider, for example, the board in the figure above, which has
squares numbered from 1 to 48. At the start, the pieces are positioned at the place marked ‘Begin’ in
the figure, that is, before the square number 1. Therefore, if a player rolls a 7 (dice showing 2 and 5
for example), her/his piece is positioned at square number 7 at the end of the first round of the game.
Furthermore, if a player’s piece is positioned at square 41, the player needs a roll result of at least 8 to
reach the end of the trail and win the game. Notice also that there will be no draw in the game.

You will be given the number of players, the number of squares in the trail, the location of the traps
and a list of dice rolls results. You must write a program that determines the winner.

 

Input

 

Your program should process several test cases. The first line of a test case contains two integers 

 

P

 

and 

 

S

 

 representing respectively the number of players and the number of squares in the trail (1 

 

≤

 

 

 

P 

 

≤

 

Begin
End

 

Trap

square 1
(first square)

square 48
(last square)
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10 and 3 

 

≤

 

 

 

S 

 

≤

 

 10000). The second line describes the traps, represented by three distinct integers 

 

T

 

1

 

,

 

T

 

2

 

 and 

 

T

 

3

 

, denoting their positions in the trail (1 

 

≤

 

 

 

T

 

1

 

, 

 

T

 

2

 

, 

 

T

 

3

 

 

 

≤

 

 

 

S

 

). The third line contains a single inte-
ger 

 

N

 

 indicating the number of dice rolls in the test. Each of the following 

 

N

 

 lines contain two integers

 

D

 

1

 

 and 

 

D

 

2

 

 (1 

 

≤

 

 

 

D

 

1

 

, 

 

D

 

2

 

 

 

≤

 

 6), representing the results of the dice rolls. The end of input is indicated by

 

P

 

 = 

 

S

 

 = 0. The set of dice roll results in a test will be always the exact number necessary for a player
to win the game.

A player is identified by a number from 1 to 

 

P

 

. Players play in a round in sequential order from 1 to 

 

P

 

.

 

The input must be read from standard input.

 

Output

 

For each test case in the input, your program should output a single integer: the number representing
the winner.

 

The output must be written to standard output.

 

Sample input

 

2 10
2 4 8
4
1 1
3 4
1 2
6 5
3 7
4 5 7
7
1 2
2 2
2 1
1 1
1 2
1 1
1 1
0 0

 

Output for the sample input

 

1
3
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Problem B

 

Secure Region

 

Source file: secure.pas, secure.c, secure.cc or secure.java

 

You have been hired by Mines Never Again, a non-governmental organization whose aim is to ban the
use of landmines. Besides working on political aspects, such as lobbying governments to join the
International Campaign to Ban Landmines, MNA also works on disarming mines left by past wars.

Nowadays, mines are detected by satellites or surveillance airplanes. But to disarm a mine you have
to get close to it. In most cases, the only way to reach a mined field is by helicopter. To clear the field,
you must find the most secure region within the field so that the helicopter can land on it. This region
is a rectangle with sides parallel to the coordinate axes, with no mines inside and whose smaller side
is the largest possible. More precisely, let 

 

A

 

 and 

 

B

 

 be the length of the sides of all possible rectangles
that do not contain any mines and 

 

A

 

 

 

≤

 

 

 

B

 

; the most secure region is a rectangle with the largest value of

 

A

 

 and the largest value of 

 

B

 

. That is, among all rectangles that do not contain any mines and whose
smaller side is 

 

A 

 

(largest possible), the most secure region is a rectangle that has the largest 

 

B

 

.

Given the limiting rectangle of a mined field and the positions of all mines inside the field, you must
write a program to find the size of the most secure region.

 

Input

 

Your program should process data for several mined fields. The first line of a mined field contains
four integers 

 

X

 

1

 

, 

 

Y

 

1

 

, 

 

X

 

2

 

 and 

 

Y

 

2

 

 which bound the field. (

 

X

 

1

 

,

 

Y

 

1

 

) are the coordinates of the field’s lower
left corner, (

 

X

 

2

 

, 

 

Y

 

2

 

) are the coordinates of the field’s upper right corner (–20000 

 

≤

 

 

 

X

 

1

 

 < 

 

X

 

2

 

 

 

≤

 

 20000
and  –20000 

 

≤

 

 

 

Y

 

1

 

 < 

 

Y

 

2

 

 

 

≤

 

 20000). The second line contains a single integer 

 

N

 

 indicating the number of
mines detected in the field (1 

 

≤

 

 

 

N

 

 

 

≤

 

 300). The following 

 

N

 

 lines contain each two integers 

 

X

 

 and 

 

Y

 

describing the position of a mine (

 

X

 

1

 

 

 

≤

 

 

 

X 

 

≤

 

 X

 

2

 

 and 

 

Y

 

1

 

 

 

≤

 

 Y 

 

≤

 

 

 

Y

 

2

 

). No two mines have the same location.
The end of input is indicated when 

 

X

 

1

 

 = 

 

Y

 

1

 

 = 

 

X

 

2

 

 = 

 

Y

 

2

 

 = 0.

 

The input must be read from standard input.

 

Output

 

For each mined field of the input your program should print a line with two integers 

 

A

 

 and 

 

B

 

, where

 

A 

 

≤

 

 

 

B

 

, describing the size of the most secure region.

 

The output must be written to standard output.
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Sample input

 

0 0 100 100
9
0 0
0 100
100 0
100 100
50 50
25 50
50 25
75 50
50 75
-2 0 6 8
3
0 2
2 4 
4 6 
0 0 0 0

 

Output for the sample input

 

50 50
4 6
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Problem C

 

Runner Pawns

 

Source file: pawns.pas, pawns.c, pawns.cc or pawns.java

 

The “Runner Pawns” game is a variant of classic Chess for a single player. It uses a board similar to
the chess board, divided in 8x8 squares. As in chess, each square can contain only one piece at a time.
The pieces are a number of pawns (the “Runner Pawns”), and a single horse, which is the only piece
under command of the player. The objective is to capture all pawns before they get to the last row and
become kings.

Horse moves are said to be in ‘L’ shape, since a horse must always move two squares in one direction
and one square in the perpendicular direction. The figure above illustrates horse movements, where
the character ‘H’ indicates the horse current position, and the character ‘•’ indicates possible final
positions. Notice that in the representation used black and white squares of the chess board are not
distinguished.

Pawns’ moves are a bit different from chess, since they can only move one square forward, and all of
them move at the same time. They never move on a diagonal. Squares of the board are numbered from
1 to 64, as shown above. Pawns move in vertical direction from top to bottom, so that squares num-
bered 57 to 64 are the pawns’ goal.

 

H

 

Possible movements of the horse

 

01 02 03 04 05 06 07 08 
09 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

 

A board with cells numbered

 

From position 22, the horse can move to positions 05,
07, 12, 16, 28, 32, 37 or 39. From position 57, the
horse can move to positions 42 or 51. 
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Each round of the game is composed by one move of the horse followed by a simultaneous move of
all pawns not yet captured.

In order to capture a pawn, the player has to move the horse to a square where a pawn is. A captured
pawn leaves the board, and only the remaining ones will move ahead in the next round. To win the
game, the player has to capture all pawns. If a pawn gets to the last row, it becomes a king. Then the
horse has only one more move to capture it. If it doesn’t, the king moves and it means that the game is
over and the player loses. Moreover, if the horse moves to a square that will be occupied by a pawn at
the next move of the pawns, the horse is captured by the pawn and the player loses.

Your task is to write a program that analyses a “Runner Pawns” diagram and answer whether there is
a sequence of movements for the horse to win. If it is possible, your program should determine the
minimum number of moves needed by the horse to capture all pawns.

 

Input

 

The input contains several instances of the problem, one per line. Each instance starts with an integer

 

P

 

 representing the number of pawns (0 

 

≤

 

 

 

P

 

 

 

≤

 

 8), followed by 

 

P

 

 integers (1 

 

≤

 

 

 

A

 

1

 

, 

 

A

 

2

 

, ... 

 

A

 

P

 

 

 

≤

 

 64) that
describe the initial position of each pawn, followed by an integer 

 

H

 

 (1 

 

≤

 

 

 

H

 

 

 

≤

 

 64) representing the
starting position of the horse. The end of input is indicated by a line containing 

 

P

 

 = 0.

 

The input must be read from standard input.

 

Output

 

For each instance of the problem in the input your program must print a single line, containing the
answer to the problem. If there is a sequence of moves for the horse to capture all pawns before a sur-
viving king moves (and without the horse being captured by a pawn) then the program should print
the length of the minimum sequence of moves that make it possible. Otherwise your program should
print the word ‘impossible’.

 

The output must be written to standard output.

 

Sample input

 

1 1 11
1 60 1
2 33 60 54
0

 

Output for the sample input

 

1
impossible
3
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Problem D

 

The Splitting Club

 

Source file: club.pas, club.c, club.cc or club.java

 

The ACM (All Can Meet) club was created with the purpose of attracting people of all ages, with the
idea that the people could sit together and share their life experience, to the benefit of all. But as it
happened, the club became such a huge success that it was practically impossible to gather all its
members at the same place and time. The club then decided to split its members into smaller “sec-
tions”. In order to make sure that sections are “nice”, the director of the club decided to impose the
following requirements:

A. all members of the same age should be in the same section,

B. all members should be part of exactly one section,

C. in each section, the maximum number of people with the same age should not be more than 

 

R

 

 
times the minimum number of people with the same age, where 

 

R

 

 is a rational number between 
1.0 and 2.0. The number 

 

R

 

 is called the splitting factor of the club.

The last condition makes sure that there is no relatively small-age group which might feel uncomfort-
able in the section. For instance, let denote by [

 

n

 

, 

 

m

 

] a group with 

 

n 

 

members who are 

 

m

 

-years old.
Then in section {[10, 50], [6, 45], [70, 12], [43, 23]} the maximum number of people with the same
age is 70, the minimum number of people with the same age is 6. If 

 

R

 

 = 2.0, then we say this section
does not satisfy the requirement (C) since 70/6 > 2.0. However, we can split this section into two
smaller sections, namely {[10, 50],[6, 45]} and {[70, 12], [43, 23]}, which satisfy all the require-
ments.

Given the splitting factor 

 

R

 

 and a list of the members of the club, you must write a program to find the
minimum number of sections satisfying the three requirements above.

 

Input

 

Your program should process several test cases. The first line of a test case contains an integer 

 

K 

 

and
a rational 

 

R

 

. 

 

K 

 

represents

 

 

 

the number of different ages in the club (1 

 

≤

 

 

 

K

 

 

 

≤

 

 120), and 

 

R

 

 represents the
splitting factor set by the club director (1.0 

 

≤

 

 

 

R

 

 

 

≤

 

 2.0). The next 

 

K

 

 lines describe the group members,
each line containing two integers 

 

N

 

 and 

 

M

 

, indicating that there are 

 

N

 

 members who are 

 

M

 

-years old
in the club (1 

 

≤

 

 

 

N

 

 

 

≤

 

 10000 and 1 

 

≤

 

 

 

M

 

 

 

≤

 

 120). The end of input is indicated by a line with 

 

K

 

 = 0 and 

 

R

 

= 0.0.

The input values will be such that the eventual error in the internal binary representation of 

 

R

 

 will not
affect the result.

 

The input must be read from standard input.
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Output

 

For each instance of the problem you should output a single line, containing the minimum number of
groups satisfying the three requirements above.

 

The output must be written to standard output.

 

Sample input

 

5 1.7 
100 7
18 10
11 17
567 25
62 34
3 1.0
12 18
107 11
250 57
0 0.0

 

Output for the sample input

 

3 
3
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Problem E

 

Kryptonite Mine

 

Source file: krypto.pas, krypto.c, krypto.cc or krypto.java

 

In the year of 2222, a terrible disaster happened at the kryptonite mine in Mars: a marsquake shook
that part of the planet. Differently from earthquakes in Earth, marsquakes are not unusual on Mars.
This one, however, caused the mine to start sinking slowly into the soil. The mine has a rectangular
external shape, and its interior is like a maze, with high, straight walls and, most importantly, teleport-
ers. Teleporters, as you know, can transport people instantly from one place to another. Teleporters in
the mine are old models, using ancient technology, and can only teleport people if there is a clear
view from one teleporter booth to another (that is, if there are no obstacles or walls in between the
booths). You can see the map of the mine in the figure below.

You are trapped alone inside the mine. Fortunately, you have a map of the whole mine, know your
current location, the positions of the walls, the locations of the exit and all teleporter booths. Unfortu-
nately, the marsquake affected the energy system, and you know the teleporters can be used for a lim-
ited number of times only. 

You want to get out of the mine walking as little as possible, since you sprained your ankle during the
marsquake. You must find the route from your present location to the exit that requires the least
amount of walking.

 

Input

 

The input consists of many test cases. The first line of a test case contains three integers 

 

N

 

, 

 

M

 

 and 

 

L

 

,
which indicate, respectively, the number of times the teleporters can be used, the number of walls in
the mine and the number of teleporter booths (0 

 

≤

 

 

 

N

 

, 

 

M

 

, 

 

L

 

 

 

≤

 

 50). Each of the next 

 

M

 

 lines contains
four integers 

 

X

 

1

 

, 

 

Y

 

1

 

, 

 

X

 

2

 

 and 

 

Y

 

2

 

,

 

 which represent the coordinates of the endpoints of a wall. You may
ignore the thickness of walls and assume they do not intersect each other (–20000 

 

≤

 

 

 

X

 

1

 

 < 

 

X

 

2

 

 

 

≤

 

 20000
and  –20000 

 

≤

 

 

 

Y

 

1

 

 < 

 

Y

 

2

 

 

 

≤

 

 20000). The next 

 

L

 

 lines contain the location of teleporter booths, given by
two integers 

 

X

 

p

 

 and 

 

Y

 

p

 

. The last line of each test case contains four integers 

 

X

 

b

 

, 

 

Y

 

b

 

, 

 

X

 

e

 

 and 

 

Y

 

e

 

 where

 

Teleporter booths
Your position

Exit
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(

 

X

 

b

 

, 

 

Y

 

b

 

) are the coordinates of your location and (

 

X

 

e

 

, 

 

Y

 

e

 

) are the coordinates of the mine's exit. The
end of input is indicated by 

 

M

 

=

 

N

 

=

 

L

 

=0.

 

The input must be read from standard input.

 

Output

 

For each test case in the input your program must output a single line, containing an integer represent-
ing the distance you need to walk to get out of the mine. Of course, you should not consider the dis-
tances you teleported.The distance must be rounded to the nearest integer.

 

The output must be written to standard output.

 

Sample input

 

1 1 3
5 -4 5 4
1 0
5 5 
9 0
0 0 10 0
1 1 3
5 -4 5 4
0 0
5 5
10 0
0 0 10 0
0 0 0

 

Output for the sample input

 

8
7
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Problem F

 

X-Mart

 

Source file: xmart.pas, xmart.c, xmart.cc or xmart.java

 

The well known supermarket chain X-Mart decided to cut costs, reducing the number of different
products available in its shops’ shelves. The marketing department was concerned that this decision
would affect sales, and decided to exploit the reduction of products to promote customer relations.

X-Mart therefore organized an Internet poll, in which customers could choose which products they
wanted the supermarket to keep on their shelves, and which products they wanted the supermarket to
withdraw from their shelves. The list of currently available products was published on the Internet. 

To simplify the polling system, each customer was allowed to choose at most two products to vote for
(meaning the supermarket should keep selling it) and at most two products to vote against (meaning
the supermarket should stop selling it).

Once the marketing department got all the votes in its database, it wants to know if it is possible to
choose a new list of products that pleases ALL voting customers. The marketing department considers
that a customer will be pleased when at least one of the products she/he voted for was indeed kept by
the supermarket, and at least one of the products she/he voted against was withdrawn from the super-
market’s shelves. You may assume a customer does not vote for and against the same product.

 

Input

 

Your program should process several test cases. The first line of a test case contains two integers 

 

C

 

and 

 

P,

 

 representing respectively the number of customers and the number of products in the test (1 

 

≤

 

C 

 

≤

 

 1000 and 1 

 

≤

 

 

 

P 

 

≤

 

 10000). Each of the next 

 

C 

 

lines describes the preference of one customer, rep-
resented as four integers 

 

X, Y, S 

 

and 

 

T

 

 (0 

 

≤

 

 

 

X

 

, 

 

Y

 

, 

 

S

 

, 

 

T

 

 

 

≤

 

 

 

P

 

). 

 

X

 

 and 

 

Y

 

 are products the customer wants the
supermarket to keep selling, 

 

S

 

 and 

 

T

 

 are products the customer wants the supermarket to stop selling.
A zero value for any of the variables 

 

X, Y, S 

 

and 

 

T

 

 means the customer is not making use of that vote.
A line with 

 

C

 

 = 

 

P

 

 = 0 indicates the end of input.

 

The input must be read from standard input.

 

Output

 

For each test case your program must print one line, containing either the word ‘yes’ (if it is possible
to please all voting customers) or the word ‘no’ (if it is not possible). 

 

The output must be written to standard output.
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Sample input

 

3 4 
1 2 3 4 
3 4 1 2 
2 3 1 4 
4 4 
1 2 3 4 
3 4 1 2 
1 3 2 4 
1 4 2 3 
4 4 
1 2 3 4 
3 4 1 0 
1 3 2 4 
2 4 0 3
0 0

 

Output for the sample input

 

yes
yes
no
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Problem G

 

Telecommunication Partners

 

Source file: partners.pas, partners.c, partners.cc or partners.java

 

ICPC, an international telecommunication company, wants to improve its relationship with business
subscribers, offering a discount on calls made to a fixed set of telephone numbers selected by the cli-
ent company. To help ICPC decide on the cost for this new service, they searched their database and
produced a list of calls made last year by one company to another. If a company communicated with
another company (making or receiving a call) during last year, we will say they are 

 

Business Partners

 

.

You have been hired by ICPC to process the list of calls from last year and determine the size (in
number of companies) of the largest set of companies that are Business Partners of at least 

 

K

 

 other
companies in the same set. That is, you must find a set 

 

S

 

 of companies such that every company in 

 

S

 

has at least 

 

K

 

 business partners that are also in 

 

S

 

 (and possibly partners that are outside 

 

S

 

), where 

 

K

 

 is
a parameter chosen by the ICPC.

 

Input

 

Your program should process several test cases. The first line of a test case contains three integers 

 

N,
P

 

 and 

 

K.

 

 

 

N

 

 represents the total number of companies subscribed to ICPC (1 

 

≤

 

 

 

N 

 

≤

 

 1000); companies
are identified by numbers between 1 and 

 

N

 

. 

 

P

 

 represents the total number of business partner pairs,
produced from last year calls; and 

 

K

 

 is the minimum number of business partners a company must
have in the final set (1

 

≤

 

 

 

K 

 

≤

 

 

 

N–

 

1), as described above. The next 

 

P 

 

lines describe each a business part-
ner pair, represented as two integers 

 

X

 

 and 

 

Y

 

, where 

 

X

 

 and 

 

Y

 

 are companies (1 

 

≤

 

 

 

X

 

 

 

≤

 

 

 

N, 

 

1 

 

≤

 

 

 

Y

 

 

 

≤

 

 

 

N 

 

and

 

X 

 

≠

 

 Y

 

). The value 

 

N 

 

= 0 indicates the end of input.

 

The input must be read from standard input.

 

Output

 

For each test case from the input, your program should print a single line, containing the size of the
largest set of companies found by your program. 

 

The output must be written to standard output.
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Sample input

 

5 3 1
1 2
4 3
4 5
5 3 2
1 2
4 3
4 5
10 11 2
1 2
1 3
3 2
3 5
5 4
5 6
9 10
8 9
8 7
6 7
6 8
0 0 0

 

Output for the sample input

 

3
0
7
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Problem H

 

Child Play

 

Source file: child.pas, child.c, child.cc or child.java

 

Natives from the tiny island of Tookutoo are keen on mathematics, and teach their children to play
several math-oriented games. A popular puzzle in Tookutoo is played with ceramic slabs like the ones
shown in the figure below.

As it can be seen in the figure above, slabs are similar to dominoes, being divided in two parts; in each
part an integer value is imprinted. The slabs above have values [2, 1], [6, 3] and [3, 1]. Note that a slab
[

 

a

 

, 

 

b

 

] can also be written as [

 

b

 

, 

 

a

 

].

The puzzle starts with a player receiving a set of slabs chosen randomly from a large and varied pool.
Using the given set of slabs, the player has to find an arrangement in which the slabs are put side by
side on the table in such a way that the sum of values on the upper side is equal to the sum of values
on the lower side. For example, for the set in the figure above, a correct arrangement is

 

1 6 1
2 3 3

 

If it is not possible to find an arrangement using all the slabs chosen, the player may discard one of
them, but the value of the sum in the arrangement must be the highest possible. Besides, if more than
one slab can be discarded while leaving the same sum, the player must discard the slab [

 

a

 

, 

 

b

 

] such that

 

a

 

 

 

≤

 

 

 

b

 

 and 

 

a

 

 is the least possible value considering all possible slabs to be discarded.

You must write a program that, given a set of slabs, tries to find an arrangement that satisfies the con-
ditions of the puzzle, discarding one slab if necessary.

 

Input

 

Your program should process several test cases. The first line of a test case contains a single integer 

 

N

 

,
the number of slabs in the test (0 

 

≤

 

 

 

N

 

 

 

≤

 

 400). Each of the following 

 

N

 

 lines contains two integers 

 

X

 

i

 

and 

 

Y

 

i

 

 

 

describing a slab that was given to the player (0 

 

≤

 

 

 

X

 

i 

 

≤

 

 1000 and 0 

 

≤

 

 

 

Y

 

i

 

 

 

≤

 

 1000). The value 

 

N 

 

=
0 indicates the end of input.

 

The input must be read from standard input.
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Output

 

For each test case your program must produce one line describing the result. If it is not possible to
find an arrangement, print the word ‘impossible’. If it is possible to find an arrangement, print its sum
and the description of the discarded slab (if any). If you had do discard a slab, describe it in the form
‘discard 

 

X Y

 

’, where

 

 X 

 

≤

 

 Y

 

; otherwise print ‘discard none’.

 

The output must be written to standard output.

 

Sample input

 

4
1 4
2 9
2 1
0 4
2
8 1
9 4
3
6 3
1 2
3 1
0

 

Output for the sample input

 

10 discard 1 2
impossible
8 discard none


