
acm International Collegiate
Programming Contest

event
sponsor2004

ACM International Collegiate Programming Contest 2004
Brazil Sub-Regional

October 2rd, 2004

(This problem set contains 7 problems; pages are numbered from 1 to 17)

Hosted by:

Universidade Federal de Minas Gerais, Belo Horizonte, MG
Universidade Regional de Blumenau, Blumenau, SC
Universidade de Braśılia, Braśılia, DF
Pontif́ıcia Universidade Católica de Campinas, Campinas, SP
Universidade Federal da Paráıba, Campina Grande, PB
Universidade Católica Dom Bosco, Campo Grande, MS
Universidade Estadual do Oeste do Paraná, Cascavel, PR
Universidade de Fortaleza, Fortaleza, CE
Universidade Federal do Amazonas, Manaus, AM
Faculdades COC, Ribeirão Preto, SP
Pontif́ıcia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ
Fundação Universidade Federal do Rio Grande, Rio Grande, RS
Centro Universitário 9 de Julho, São Paulo, SP
Centro Universitário Triângulo, Uberlândia, MG



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 1

Problem A
Crossword With No Words

Although word square games go back to ancient times – a word square was found in the Roman
ruins of Pompeii – it was only in 1913 that the Sunday New York World printed a puzzle called
a ’word-cross’ invented by Arthur Wynne, a journalist who had the job of devising a weekly
puzzle for the comic section of the newspaper. The puzzle was an immediate success, became a
weekly feature, and is nowadays probably the most popular and widespread word game in the
world.

(For those weird people who do not know it, crossword is a puzzle in which a player must fill
in words indicated by verbal clues down and across a checkered pattern so as to fit wherever
they cross.)

A crossword configuration is the figure formed by empty squares and black squares in a puzzle.
Over the first years several types of shapes and figures (diamond, circle, square) were tried
before the familiar rectangular shape with a few black squares (used to separate words) was
universally adopted. For this problem, we will define that a configuration for a puzzle with N
lines and M columns is valid only if

• each column contains exactly one black square; and

• black squares are not in adjacent columns in the same line.

Invalid configuration Valid configuration

Given a list of lengths of words, all of which must be put in the down (vertical) direction, your
task is to find a valid configuration for a puzzle with N lines, M columns and M black squares.

Input

The input contains several test cases. The first line of a test case contains three integers N , M
and K, indicating respectively the number of lines in the puzzle (2 ≤ N ≤ 2000) the number of
columns in the puzzle (1 ≤ M ≤ 2000) and the number of lengths of words (1 ≤ K ≤ 4000). The
second line contains K integers Wk, representing the lengths of words that must be put in the
down (vertical) direction (1 ≤ Wk ≤ N−1). The end of input is indicated by N = M = K = 0.

The input must be read from standard input.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 2

Output

For each test case in the input your program must produce an answer. The first line of an answer
must contain a test case identifier, in the form ’#i’ where i starts from 1 and is incremented
for every test case. Then, if there is a valid configuration for the puzzle, your program must
produce M lines of output, describing one such configuration. Each line must contain two
integers L and C, separated by a blank space, indicating the position of a black square (L
indicates a line number and C indicates a column number, with 1 ≤ L ≤ N and 1 ≤ C ≤ M).
If more than one valid configuration is possible, print any one of those. If a valid configuration
for the puzzle is not possible, your program must output as answer a single line containing the
value 0.

The output must be written to standard output.

Sample Input

5 4 10

2 2 2 2 2 2 2 2 2 2

3 4 6

1 1 1 2 1 2

0 0 0

Output for the sample input

#1

0

#2

2 1

1 2

2 3

1 4



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 3

Problem B
GoEasy

The mayor of a city wants to introduce a new transport system to simplify the life of its
inhabitants. That will be done via the use of a debit card, which the mayor named “GoEasy”.
There are two means of transportation in the city: trains and buses. The train system is “zone
based” whereas the bus system is “journey based”. The fare for a journey is computed as
follows:

• There is an initial two money units fare for entering the transport system, regardless of
the initial means of transportation.

• When travelling by train a customer pays four money units for each change of zone.

• When travelling by bus a customer pays one money unit each time she/he boards a bus.

A transport system map will provide information about the stations belonging to each zone,
and the sequence of stations for each bus and train itinerary. Buses and trains move in both
directions in each itinerary, and no train or bus goes through the same station twice during a
single trip through an itinerary. It is always possible to go from any station to any other station
using trains and/or buses.

The rules for computing fares are strict: if during a train journey a customer enters a given
zone twice, she/he is charged twice; similarly, if during a bus journey a customer boards twice
the bus for the same itinerary, she/he is charged twice.

B3

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Zone 1

Zone 2

Zone 3

T1

B1

T2

T3

B2

Sample Transport Map

In the transport map above a customer can travel from station 2 to station 4 paying just two
money units, by using line T1, since they are in the same zone. But if the customer needs to
go from station 2 to 5, then the best is to take the bus B3 to station 10 and then take the bus
B2 to station 5, paying in total four money units.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 4

Rather than tracking the whole trip of each passenger, the idea of the mayor is that machines
will be placed in all stations, and travellers are supposed to swipe their personal GoEasy
travel card only when starting AND finishing the whole journey. Since all the machines are
interconnected into a network, based on the departure and arrival stations the system can
compute the minimum cost possible for the trip, and that amount is charged from the traveller’s
debit card. All that is missing is a computer system for doing the calculations for the fare to be
deducted. So, given the map of the transport system in the city, you must write a program to
compute the minimum fare the customer should pay to travel between two given stops/stations.

Input

The input contains several test cases. The first line of a test case contains two integers Z
and S, which indicate respectively the number of zones (1 ≤ Z ≤ 30) and the number of
train/bus stations in the city (1 ≤ S ≤ 100). Each station has a unique identification number
ranging from 1 to S, and each station belongs to exactly one zone. Each of the following Z
lines describes the stations belonging to a zone. The description for a zone starts with an
integer K indicating the number of stations (1 ≤ K ≤ S) in the zone, followed by K integers
representing the stations in the zone. After that comes a line with two integer numbers T and
B, representing respectively the number of train itineraries (1 ≤ T ≤ 50) and the number of
bus itineraries (1 ≤ B ≤ 50). Next comes T lines describing train itineraries, followed by B
lines describing bus itineraries. The description of each itinerary consists of a line containing
an integer L indicating the number of stations (2 ≤ L ≤ S) in the itinerary, followed by L
integers specifying the sequence of stations in the itinerary. Finally it comes a line with two
integers X and Y (1 ≤ X ≤ S, 1 ≤ Y ≤ S and X 6= Y ), specifying that the customer travelled
from station X to station Y . The end of input is indicated by Z = S = 0.

The input must be read from standard input.

Output

For each test case your program should output one line, containing an integer representing the
amount to be deducted from the traveller’s GoEasy card.

The output must be written to standard output.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 5

Sample Input

3 15

2 8 9

7 2 3 4 7 12 13 14

6 1 5 6 10 11 15

3 3

5 1 2 3 4 5

3 1 6 11

4 4 8 12 11

6 2 7 12 13 14 15

3 5 10 15

6 1 2 3 8 9 10

11 6

3 15

2 8 9

7 2 3 4 7 12 13 14

6 1 5 6 10 11 15

3 3

5 1 2 3 4 5

3 1 6 11

4 4 8 12 11

6 2 7 12 13 14 15

3 5 10 15

6 1 2 3 8 9 10

11 5

0 0

Output for the sample input

2

4



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 6

Problem C
Roman Patrollers

In ancient times, patrollers were used to ensure that all the cities of the Roman Empire were
under control. A patroller’s job consisted in continuously visiting the cities of the empire, trying
to minimise the interval between two visits to each city. The Military Society (MS) wants to
simulate the behavior of one such patroller to see how effective they were.

Each cycle of the simulation corresponds to one time unit. The instantaneous city idleness
(ICI) for a city X after T cycles of the simulation is the number of cycles elapsed since the
last visit of the patroller to the city X (i.e. the number of time units the city X remained
unvisited). All of the cities have initial instantaneous city idleness equal to zero at the start of
the simulation. The instantaneous empire idleness (IEI) after each given cycle is the sum of
the instantaneous city idleness of all cities after that given cycle. Finally, the empire idleness
(EI) for an N -cycle simulation is the sum of the instantaneous empire idleness after each of
the N cycles of simulation.

After visiting a city X, the patroller always chooses to visit the neighbour city Y with the
highest instantaneous city idleness (if more than one city has the highest idleness, the one with
the lowest identifier is chosen). Cities X and Y are neighbour if there is a road linking the two
cities directly, without going through any intermediate city. In the beginning of the simulation,
the patroller is located in one of the cities, and is given a map of the Roman Empire containing
a description of all the roads in the empire, indicating the length (in kilometers) and which two
cities each road connects. A road between cities X and Y can be used both to go from X to Y
and from Y to X.

Assuming that a patroller travels one kilometer in one time unit (one simulation cycle) and
that the time to visit a city is negligible (equal to zero), MS asks you to determine the empire
idleness after an N -cycle simulation.

For clarity, consider the example of an empire which contains 3 cities (1, 2 and 3) and two roads
of length 1 km. The first road connects cities 1 and 2, while the second road connects cities 2
and 3. Below you find a trace of a 3-cycle simulation for such a scenario, considering that the
patroller starts at city 1.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 7

Start of the simulation

Patroller at: 1

ICI1 = 0, ICI2 = 0, ICI3 = 0

IEI = 0

EI = 0

After cycle 1

Patroller at: 2

ICI1 = 1, ICI2 = 0, ICI3 = 1

IEI = 2

EI = 2

After cycle 2

Patroller at: 1

ICI1 = 0, ICI2 = 1, ICI3 = 2

IEI = 3

EI = 5

After cycle 3

Patroller at: 2

ICI1 = 1, ICI2 = 0, ICI3 = 3

IEI = 4

EI = 9

Therefore, for such a scenario, after 3 simulation cycles the empire idleness is 9.

Input

The input consists of several test cases. The first line of a test case contains four integers
C, R,N , and S, indicating respectively the quantity of cities in the empire (2 ≤ C ≤ 1000), the
number of roads (1 ≤ R ≤ C(C − 1)/2), the number of cycles to be simulated (1 ≤ N ≤ 1000)
and the identifier of the starting city of the patroller (1 ≤ S ≤ C). Each city is identified
by a distinct integer from 1 to C. Each of the following R lines contains three integers X,Y
and D describing a road; X and Y represent cities (1 ≤ X 6= Y ≤ C) and D represents the
distance (1 ≤ D ≤ 1000), in kilometers, of the road that connects X and Y directly, without
passing through any other city. Each pair of cities X and Y will appear at most once in a road
description. You can assume that it is always possible to travel from any city to any other city
in the empire using the roads available. The end of input is indicated by C = R = N = S = 0.

The input must be read from standard input.

Output

For each test case in the input, your program must produce one line containing the empire
idleness after the N -cycle simulation.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 8

The output must be written to standard output.

Sample Input

2 1 1 1

1 2 2

2 1 2 1

1 2 2

2 1 3 1

1 2 2

2 1 4 1

1 2 2

3 2 3 1

1 2 1

2 3 1

0 0 0 0

Output for the sample input

2

4

8

10

9



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 9

Problem D
Very Special Boxes

Special Box Company (SBC) is a small family-owned and family-run business which produces
decorated carton boxes for wrapping gifts. The boxes are hand-made, produced individually
from fine materials. When accepting an order from a client, they always produce a few more
boxes than needed, to keep a stock of boxes to be sold in the future, if needed. Over the years
their stock has been growing, with boxes all over the place, and they decided they needed to
organize it a bit more. They have therefore made a list registering the dimensions of every box
in their stock.

SBC has just received an order from a client that must be delivered tomorrow, so there is no
time to produce new boxes. The client wants a certain number N of boxes all of the same size;
each box will be used to pack one item of dimensions X, Y and Z. As the carton used in the
boxes is very thin, you may assume that a box of size (X,Y, Z) would fit perfectly the item
the client wants to wrap. If there are not at least N boxes that fit perfectly, the client wants
N boxes that fit the items as tightly as possible. The box size that fits the items as tightly as
possible is the one which minimizes the empty space when the item is put inside the box. An
item can be rotated in any direction to be accomodated inside a box; therefore, a box of size
(X,Y, Z) is as good as a box of size (Y, Z, X), for example.

Can you help SBC finding whether they can fulfill the customer order?

Input

The input consists of several test cases. The first line of a test case contains two integers N and
M , indicating respectively the number of boxes the client needs to buy (1 ≤ N ≤ 1500) and the
number of boxes in the stock list (1 ≤ M ≤ 1500). The second line contains three integers X,
Y and Z, representing the dimensions of the item the client wants to wrap (0 < X, Y, Z ≤ 50).
Each of the next M lines contains three integers A, B and C representing the dimensions of a
box in the stock list (0 < A, B, C ≤ 50). A test case with N = 0 indicates the end of the input.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line, containing either:

• the single word ‘impossible’, in case it is not possible to fulfill the client’s order (because
there are not at least N boxes of the same size in stock that can contain the item); or

• one integer V , which specifies the volume of empty space left when one of the N items is
packed in one of the boxes chosen.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 10

The output must be written to standard output.

Sample Input

1 1

2 4 3

2 3 4

2 6

3 1 3

7 4 7

10 8 2

2 8 10

6 2 9

7 7 4

6 2 9

1 1

3 3 3

1 1 1

0 0

Output for the sample input

0

99

impossible



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 11

Problem E
Drop Out

Drop Out is the name of a simple card game which is played with a normal deck of 52 cards.
Cards are ordered by rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jockey, Queen, King), with Ace being
the smallest and King the largest value. Card suits are disregarded. Players (at least two) sit
around a table and a shuffled deck is put in the center of the table, card faces down.

At the start of the game, all players are “active”. The game proceeds in rounds. In each round,
active players are dealt one card from the deck, in clockwise direction regarding their sitting
positions. The players who are dealt the smallest card in the round drop out of the game and
become inactive. Notice that up to four players may drop out at each round. The game ends
when there remains one only active player, which is the winner. If the entire deck is played
out before a round finishes, the game is over and all active players at the beginning of this last
round are winners.

Given the number of players, their names and a shuffled deck of cards, you must write a program
to simulate the game and determine the winner or winners.

Input

The input contains several test cases. Each test case consists of six lines. The first line contains
an integer N , indicating the number of players in the game (2 ≤ N ≤ 20). The second line
contains a list of player names, separated by spaces. A player name is composed of at most 16
letters from the English alphabet (from ‘A’ through ‘Z’ and ‘a’ through ‘z’). Cards are dealt
to players in the order given by the list. The next four lines contain the description of the
shuffled deck. Card ranks are represented by integers from one to thirteen (1, 11, 12 and 13
denote respectively Ace, Jockey, Queen and King cards). The deck is described in four lines of
thirteen integers each, separated by a single space. The deck is listed from top to bottom, so
the first card dealt is the first card listed. The end of input is indicated by N = 0.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line of output, containing the
name of the winner or winners. The list of winners must appear in same order given in the
input, and each name must be followed by a space.

The output must be written to standard output.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 12

Sample Input

4

Sally Claire Mary Beatrice

1 2 3 4 5 6 7 8 8 10 11 12 13

1 2 3 4 5 6 7 9 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

6

Aline Barbie Helen Julia Mary Sally

10 5 9 7 6 10 2 13 1 8 11 12 11

7 11 4 13 4 9 6 8 13 11 2 1 5

9 6 5 3 9 4 1 12 12 13 6 1 10

3 2 7 7 2 4 8 10 5 3 8 3 12

0

Output for the sample input

Mary Beatrice

Helen



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 13

Problem F
Hurry Up!

Orienteering, a cross-country race on foot where competitors receive a map and a compass, is a
sport very popular in some european countries. Johnny and his friends entered an orienteering
competition and intend to win it.

In this competition, each team member wears a different color and starts from a different place.
There are some finishing points, each one with a list of colors it “accepts”. Every competitor
in a team must go from its starting place to one of the finishing places which accept its color.
No team member can go to the same finishing place of another member. The team penalty in
the game is the sum of the time team members take from their starting to their final places.

To maximize the chances of winning, Johnny and his team members want to determine the
most appropriate finishing point for each member of the team, assuming he and his friends
advance at possibly different speeds. That is, they want to determine for each team member
one different finishing point, so that the total time penalty for the team will be minimized.

You may assume that there will always be an answer (a different finishing point for each team
member).

Input

Your program should process several test cases. The first line of a test case contains two
integers N and M , representing respectively the number of players in the team and the number
of existing finishing points (1 ≤ N ≤ M ≤ 100). The next N lines contain each two integers
X and Y representing the starting position of a player (−20000 ≤ X,Y ≤ 20000) and a real
s, representing the player’s speed. Players are identified by the order their starting position
appear on the input (the first to appear is number 1, the second is number 2, and so on).
These identification numbers are also used to represent the players colors. The following M
lines contain each two integers X and Y defining the position of a finishing point (−20000 ≤
X,Y ≤ 20000) and a list of colors Ci accepted by that finishing point (1 ≤ Ci ≤ N); the end
of the list is indicated by a value of 0 (zero). The end of input is indicated by N = M = 0.

The input must be read from standard input.

Output

For each test case, your program should output a single line, containing a real value representing
the minimal time penalty, i.e. the minimal sum of time taken by the players to reach their
respective finishing points. Your answers must be rounded to one digit after the decimal point.

The output must be written to standard output.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 14

Sample Input

1 1

0 0 1.0

1 1 1 0

2 3

100 100 1.0

100 200 1.0

110 100 1 2 0

110 200 1 2 0

200 250 1 0

1 2

0 0 1.0

11111 11111 1 0

11111 -11111 1 0

0 0

Output for the sample input

1.4

20.0

15713.3



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 15

Problem G
Chemistry

International Chemical Products Company (ICPC) is a company known world-wide for its good
and affordable products, which include shampoos, cleaning products, bug-killing products, and
even some types of vaccines. The ICPC engineers are always researching new ways of reducing
their products’ manufacturing costs, without lowering their quality. One of their engineers, Mr.
Poucher, has a new idea to reduce the cost, which aims at reducing the number of containers
necessary to hold the substances during the sequence of chemical reactions to obtain a final
substance. These final substances are obtained through a sequence of reactions of the form X +
Y→ Z, where X and Y are either initial substances or intermediate substances that were already
generated from previous reactions. These reactions are done inside a reaction container, which
once emptied can be cleaned up and used again. The process for generating a final substance
can be described via a sequence of two simple operations:

• put an available substance in an empty reaction container C;

• perform the reaction X + Y → Z either by putting X in the reaction container holding
Y, or by putting Y in the reaction container containing X. The order does not affect the
end result of the reaction.

What Mr. Poucher noticed was that by choosing smartly the sequence of reaction, ICPC could
drastically cut out on the number of reaction containers needed in the company. For example,
consider the following sequence of chemical reactions used to obtain final substance P:

1) A + B -> T1

2) C + D -> T2

3) E + F -> T3

4) T2 + T3 -> T4

5) T4 + T1 -> P

In this example, A, B, C, D, E, and F are the initial substances (only appear on the left side
of reactions), T1, T2, T3 and T4 are the intermediate substances (appear on the left side of
at least one reaction, and exactly once on right side of some other reaction) and P is the final
substance (only appears on the right side of a single reaction, which will be the last one listed).
If the sequence of reactions is performed as given then three reaction containers are necessary
in order to produce the final substance P:

Containers

Operations C1 C2 C3

put A in C1: A - -

add B to C1: T1 - -

put C in C2: T1 C -

add D to C2: T1 T2 -



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 16

put E in C3: T1 T2 E

add F to C3: T1 T2 T3

put T2 in C3: T1 - T4

put T4 in C1: P - -

Note, however, that if the reactions are performed in the sequence 2, 3, 4, 1, 5, two reaction
containers are sufficient:

Containers

Operations C1 C2

put C in C1: C

add D to C1: T2

put E in C2: T2 E

add F to C2: T2 T3

put T2 in C2: - T4

put A in C1: A T4

add B to C1: T1 T4

put T1 in C2: - P

You have been hired by ICPC, and your task is to create a computer program to determine the
minimum number of reaction containers necessary to perform the sequence of reactions needed
to obtain the final substance.

You should assume that:

• The reaction producing the final substance is the last listed, and the reaction producing an
intermediate substance will always precede reactions where that intermediate substance
is used.

• A sequence of reactions producing the final substance is always possible.

• ICPC has an unlimited supply of initial substances.

• At the beginning of the production process, each initial substance is in a storage container,
used to hold all ICPC stock of this substance. Such containers cannot be used as reaction
container to hold intermediate products of reactions.

• All the reaction containers are large enough to hold all the resulting substances.

• The amount of substance generated by a single reaction is just enough to be used as input
to a single other reaction. For instance, if an intermediate product Z is necessary as input
for two different reaction, this product must be produced twice.

• Every reaction uses exactly two distinct substances and generates also a distinct sub-
stance, i.e. all the reaction have the form X + Y → Z, where X, Y and Z are all distinct.



ACM International Collegiate Programming Contest 2004 – Brazil Sub-Regional 17

Input

The input consists of several test cases. Each test case starts with a line containing a single
integer R, indicating the number of reactions to be considered (1 ≤ R ≤ 5000). The following
R lines are of the form:

S1 + S2 -> S3

describing a reaction that consumes S1 and S2 and produces S3 as a result. The names of all
substances are case-sensitive alphanumeric strings of size at most 5. A test case with R = 0
indicates the end of the input.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line, containing the string
‘PRODUCT requires N containers’, where PRODUCT is the final substance and N is the number
of containers needed to produce it.

The output must be written to standard output.

Sample Input

1

2H + O -> Water

5

A + B -> T1

C + D -> T2

E + F -> T3

T2 + T3 -> T4

T4 + T1 -> P

3

a + b -> ab

ab + c -> abc

abc + d -> abcd

0

Output for the sample input

Water requires 1 containers

P requires 2 containers

abcd requires 1 containers


